LUDO simulator
Tools of Artificial Intelligence

This is a quick introduction to the LUDO simulator used in the course.

JavaDoc
The following java files are included in the simulator:

Interface Summary

LUDOPIlaver |Interface which any automatic Iudo player must implement.

Class Summary
Aggressive LUDOPlaver | Example of automatic LUDO player

FifoLUDOPlaver Example of automatic LUDO player
LUDO Main class the LUDO simulator - "controls" the game.
LUDOBoard The LUDOBoard class is the core class of the LUDO simulator.

Manuall.UDOPIlayer Example of automatic LUDO player

PacifisticLUDOPlaver | Example of automatic LUDO player

RandomLUDOPlaver | Example of automatic LUDO player

SemiSmartLUDOPlaver Example of automatic LUDO player

To make an automatic LUDO player you need to write a java class implementing the Interface
LUDOPIlayer. The class contains just one method: play() which is called each time your player
should decide which brick to move.

Method Summary
void M 0

The play() method 1s called each time it 1s the players turn to roll the dice and play.

The LUDOBoard class constrains a representation of the actual LUDO board and methods to
acquire information’s about the state of the game. See the source code and the JavaDoc included
in the simulator for further details.

Side 1 af 4

Method Summary

boolean | almostHome (int index, int color)
If a given index corresponding to color are in colored(safe) area close to home.
boolean|atField (int index)
if a given index is at the field(white) area.
boolean|atHome (int index, int color)
If index corresponding to color are in home area(brick completed game).
int [1[] | cetBoardState ()
get Bricks positions(board state)
int|geiDice ()
The current value of the dice.
int[] | getMyBricks ()
Get mdex-positions of your bricks.
int |getMyColor ()
Get your color.
int [1[] | getNewBoardState (int nr, int color, int dice2)
Get the index-positions of the bricks if a particular brick. of a given number
and color 1s moved a given a dice value.
int[] getPoints ()
Get points for completed game indexed as: points[color] points are given from
3 to 0, 3 for a win, 0 for a loose.
int|getTurns ()
Number of turns left of the current player
boolean|ipnStartArea (int index, int coclor)
If brick corresponding to color and nr are in starting area.
boolean|isDone (int color)
If all bricks of a particular color 1s home(game completed)
boolean|jsGlobe (int index)
if index 1s a globe
boolean|jsStar (int index)
if index 1s a star
void kill ()
Kill the current game
boolean

moveable (int nr)
If a particular brick may be moved.

Side 2 af 4

boolean meoveBrick (int nr)
Mowe one of your bricks numbered from 0-3.

boolean nothingToDo ()
If any of your bricks may be moved.

void paint (java.awt.Graphics graphics)

voild play ()
Start a game between four players

woid print (java.lang.String str)
Print something to the graphical interface.

void|peset()

Resets the ludo board. the dice. the brick positions and points.

int rollDice ()
Roll the dice to get a random number between 1 and 6.

void|setPlaver (LUDOPlaver player, int coler)
Let a specific color of bricks be controlled by a given ludo-player

static woid trap ()

As an example of how to use, the class see some of the included LUDOPlayers.
The play() method from RandomLUDOPIayer is shown below, “board” is of the type LUDOBoard.

public void playi) |
board.print {("Fandom player playing"™):
board.rollDice():
int nr=-1:
double best = 0;
for (int i=0;i<4;i++) // find a random moveable brick
{
if (board.moveable (1)) |
double temp = rand.nextDouble (]!
if (temprhest) {
best = temp:
nr = i;

H
if (nr'!'=-1) bhoard.moveBrick(nr):
f/else nothing to do - no moveable bricks

Side 3 af 4

Index of board

In the simulator, many methods require the use and understanding of indexes, the image below
shows how the indexes are mapped onto the LUDO board.

—

Side 4 af 4

